Article electronically published on January 6, 2009 SOLUTION OF F (z +1)=exp ( F (z) ) IN COMPLEX z-PLANE

نویسنده

  • DMITRII KOUZNETSOV
چکیده

Tetration F as the analytic solution of equations F (z − 1) = ln(F (z)), F (0) = 1 is considered. The representation is suggested through the integral equation for values of F at the imaginary axis. Numerical analysis of this equation is described. The straightforward iteration converges within tens of cycles; with double precision arithmetics, the residual of order of 1.e14 is achieved. The numerical solution for F remains finite at the imaginary axis, approaching fixed points L, L∗ of logarithm (L = lnL). Robustness of the convergence and smallness of the residual indicate the existence of unique tetration F (z), that grows along the real axis and approaches L along the imaginary axis, being analytic in the whole complex z-plane except for singularities at integer the z <−1 and the cut at z <−2. Application of the same method for other cases of the Abel equation is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth of meromorphic solutions for complex difference‎ ‎equations of Malmquist type

‎In this paper‎, ‎we give some necessary conditions for a complex‎ ‎difference equation of Malmquist type‎ $$‎sum^n_{j=1}f(z+c_j)=frac{P(f(z))}{Q(f(z))}‎,$$ ‎where $n(in{mathbb{N}})geq{2}$‎, ‎and $P(f(z))$ and $Q(f(z))$ are‎ ‎relatively prime polynomials in $f(z)$ with small functions as‎ ‎coefficients‎, ‎admitting a meromorphic function of finite order‎. ‎Moreover‎, ‎the properties of finite o...

متن کامل

Polynomially bounded solutions of the Loewner‎ ‎differential equation in several complex variables

‎We determine the‎ ‎form of polynomially bounded solutions to the Loewner differential ‎equation that is satisfied by univalent subordination chains of the‎ ‎form $f(z,t)=e^{int_0^t A(tau){rm d}tau}z+cdots$‎, ‎where‎ ‎$A:[0,infty]rightarrow L(mathbb{C}^n,mathbb{C}^n)$ is a locally‎ ‎Lebesgue integrable mapping and satisfying the condition‎ ‎$$sup_{sgeq0}int_0^inftyleft|expleft{int_s^t‎ ‎[A(tau)...

متن کامل

Relation between Small Functions with Differential Polynomials Generated by Solutions of Linear Differential Equations

and Applied Analysis 3 Theorem C. Let Aj z /≡ 0 j 0, 1 be entire functions with σ Aj < 1, and let a, b be complex constants such that ab / 0 and arga/ arg b or a cb 0 < c < 1 . If ψ z /≡ 0 is an entire function with finite order, then every solution f /≡ 0 of 1.2 satisfies λ f − ψ λ f ′ − ψ λ f ′′ − ψ ∞. Furthermore, let d0 z , d1 z ,and d2 z be polynomials that are not all equal to zero, and l...

متن کامل

The Combinatorial Rigidity Conjecture Is False for Cubic Polynomials

We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995. Introduction and result Let Pd = {z + ad−2z + · · · + a0} ↔ Cd−1 be the space of monic centered polynomials of degree d > 1. Our object is to show that there exists a cubic polynomial...

متن کامل

Some results on value distribution of the difference operator

In this article, we consider the uniqueness of the difference monomials $f^{n}(z)f(z+c)$. Suppose that $f(z)$ and $g(z)$ are transcendental meromorphic functions with finite order and $E_k(1, f^{n}(z)f(z+c))=E_k(1, g^{n}(z)g(z+c))$. Then we prove that if one of the following holds (i) $n geq 14$ and $kgeq 3$, (ii) $n geq 16$ and $k=2$, (iii) $n geq 22$ and $k=1$, then $f(z)equiv t_1g(z)$ or $f(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009