Article electronically published on January 6, 2009 SOLUTION OF F (z +1)=exp ( F (z) ) IN COMPLEX z-PLANE
نویسنده
چکیده
Tetration F as the analytic solution of equations F (z − 1) = ln(F (z)), F (0) = 1 is considered. The representation is suggested through the integral equation for values of F at the imaginary axis. Numerical analysis of this equation is described. The straightforward iteration converges within tens of cycles; with double precision arithmetics, the residual of order of 1.e14 is achieved. The numerical solution for F remains finite at the imaginary axis, approaching fixed points L, L∗ of logarithm (L = lnL). Robustness of the convergence and smallness of the residual indicate the existence of unique tetration F (z), that grows along the real axis and approaches L along the imaginary axis, being analytic in the whole complex z-plane except for singularities at integer the z <−1 and the cut at z <−2. Application of the same method for other cases of the Abel equation is discussed.
منابع مشابه
Growth of meromorphic solutions for complex difference equations of Malmquist type
In this paper, we give some necessary conditions for a complex difference equation of Malmquist type $$sum^n_{j=1}f(z+c_j)=frac{P(f(z))}{Q(f(z))},$$ where $n(in{mathbb{N}})geq{2}$, and $P(f(z))$ and $Q(f(z))$ are relatively prime polynomials in $f(z)$ with small functions as coefficients, admitting a meromorphic function of finite order. Moreover, the properties of finite o...
متن کاملPolynomially bounded solutions of the Loewner differential equation in several complex variables
We determine the form of polynomially bounded solutions to the Loewner differential equation that is satisfied by univalent subordination chains of the form $f(z,t)=e^{int_0^t A(tau){rm d}tau}z+cdots$, where $A:[0,infty]rightarrow L(mathbb{C}^n,mathbb{C}^n)$ is a locally Lebesgue integrable mapping and satisfying the condition $$sup_{sgeq0}int_0^inftyleft|expleft{int_s^t [A(tau)...
متن کاملRelation between Small Functions with Differential Polynomials Generated by Solutions of Linear Differential Equations
and Applied Analysis 3 Theorem C. Let Aj z /≡ 0 j 0, 1 be entire functions with σ Aj < 1, and let a, b be complex constants such that ab / 0 and arga/ arg b or a cb 0 < c < 1 . If ψ z /≡ 0 is an entire function with finite order, then every solution f /≡ 0 of 1.2 satisfies λ f − ψ λ f ′ − ψ λ f ′′ − ψ ∞. Furthermore, let d0 z , d1 z ,and d2 z be polynomials that are not all equal to zero, and l...
متن کاملThe Combinatorial Rigidity Conjecture Is False for Cubic Polynomials
We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995. Introduction and result Let Pd = {z + ad−2z + · · · + a0} ↔ Cd−1 be the space of monic centered polynomials of degree d > 1. Our object is to show that there exists a cubic polynomial...
متن کاملSome results on value distribution of the difference operator
In this article, we consider the uniqueness of the difference monomials $f^{n}(z)f(z+c)$. Suppose that $f(z)$ and $g(z)$ are transcendental meromorphic functions with finite order and $E_k(1, f^{n}(z)f(z+c))=E_k(1, g^{n}(z)g(z+c))$. Then we prove that if one of the following holds (i) $n geq 14$ and $kgeq 3$, (ii) $n geq 16$ and $k=2$, (iii) $n geq 22$ and $k=1$, then $f(z)equiv t_1g(z)$ or $f(...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009